Гурманы за облаками: сколько стоит поужинать в космосе

Путешествия за пределами нашей биосферы — давно не новость, хотя количество туристов пока не исчисляется сотнями, а цены на такие полеты мягко говоря космические. К уже существующим предложениям для космических туристов добавили романтический ужин, сроки перенесли, а стоимость выросла в разы.


Ужин в космосе — это совместный проект двух компаний. Первая разработала космический «воздушный шар» — капсулу, наполненную газообразным водородом. Она может подниматься на несколько часов в стратосферу с людьми на борту, а потом спускать их вниз. При этом в капсуле есть все для комфортного путешествия: Wi-Fi, зона отдыха, бар и самый обычный туалет со всеми удобствами. А теперь путешественники — их в капсулу помещается 6–8 человек — смогут еще и вкусно поужинать.

Что касается ужина, за который отвечает вторая фирма, меню организаторы пока не озвучивали. Но пообещали, что оно будет «вдохновлено ролью освоения космоса за последние шестьдесят лет человеческой истории». Творить на кухне для космических туристов будет датский шеф-повар Расмус Мунк — между прочим, его ресторану в Копенгагене присвоили целых две звезды «Мишлен».

Источник: Space Perspective

Кроме того, что у клиентов будет возможность отведать авторские блюда выше облаков, авторы заявляют, что их проект оставит нулевой углеродный след.

Будет ли это считаться выходом в космос? Увы, нет. На самом деле шар поднимется на высоту 30 километров над уровнем моря, то есть не дотянет даже до линии Кармана, которая является международно признанной границей космоса, это 100 километров от поверхности нашей планеты.

Но при этом Землю туристы увидят такой же, какой ее видят космонавты с МКС. И восход Солнца из-за горизонта Земли тоже смогут понаблюдать.


Первый полет назначен на конец 2025 года, старт будет из Космического центра Кеннеди во Флориде (США). В стратосфере капсула проведет около шести часов. Стоимость такого ужина составит 495 тысяч долларов (125 тысяч из этой суммы приходится на сам полет). Если курс останется примерно нынешним, в рублях это будет 45,8 миллиона.

Автор текста: Ирина Себелева
По материалам Interesting Engineering.
Поделись
с друзьями!
249
11
11
5 дней

10 занимательных логических парадоксов

Парадокс — это два противоположных, несовместимых утверждения, для каждого из которых есть, казалось бы, убедительные аргументы. Самая острая форма парадокса — антиномия, аргумент, доказывающий эквивалентность двух утверждений, одно из которых является отрицанием другого.


Учёные и мыслители с давних времён любят развлекать себя и коллег постановкой неразрешимых задач и формулированием разного рода парадоксов. Некоторые из подобных мысленных экспериментов сохраняют актуальность на протяжении тысяч лет, что свидетельствует о несовершенстве многих популярных научных моделей и «дырах» в общепринятых теориях, давно считающихся фундаментальными.

1. Апория «Ахиллес и черепаха»



Парадокс Ахиллеса и черепахи — одна из апорий (логически верных, но противоречивых высказываний), сформулированных древнегреческим философом Зеноном Элейским в V-м веке до нашей эры.

Суть её в следующем: легендарный герой Ахиллес решил посоревноваться в беге с черепахой. Как известно, черепахи не отличаются прыткостью, поэтому Ахиллес дал сопернику фору в 500 м. Когда черепаха преодолевает эту дистанцию, герой пускается в погоню со скоростью в 10 раз большей, то есть пока черепаха ползёт 50 м, Ахиллес успевает пробежать данные ей 500 м форы.

Затем бегун преодолевает следующие 50 м, но черепаха в это время отползает ещё на 5 м, кажется, что Ахиллес вот-вот её догонит, однако соперница всё ещё впереди и пока он бежит 5 м, ей удаётся продвинуться ещё на полметра и так далее. Дистанция между ними бесконечно сокращается, но по идее, герою так и не удаётся догнать медлительную черепаху, она ненамного, но всегда опережает его.

Конечно, с точки зрения физики парадокс не имеет смысла — если Ахиллес движется намного быстрее, он в любом случае вырвется вперёд, однако Зенон, в первую очередь, хотел продемонстрировать своими рассуждениями, что идеализированные математические понятия «точка пространства» и «момент времени» не слишком подходят для корректного применения к реальному движению.

Апория выявляет расхождение между математически обоснованной идеей, что ненулевые интервалы пространства и времени можно делить бесконечно (поэтому черепаха должна всегда оставаться впереди) и реальностью, в которой герой, конечно, выигрывает гонку.

2. Парадокс временной петли



Парадоксы, описывающие путешествия во времени, давно служат источником вдохновения для писателей-фантастов и создателей научно-фантастических фильмов и сериалов. Существует несколько вариантов парадоксов временной петли, один из самых простых и наглядных примеров подобной проблемы привёл в своей книге «The New Time Travelers» («Новые путешественники во времени») Дэвид Туми, профессор из Университета Массачусетса.

Представьте себе, что путешественник во времени купил в книжном магазине экземпляр шекспировского «Гамлета». Затем он отправился в Англию времён Королевы-девы Елизаветы I и отыскав Уильяма Шекспира, вручил ему книгу. Тот переписал её и издал, как собственное сочинение.

Проходят сотни лет, «Гамлета» переводят на десятки языков, бесконечно переиздают, и одна из копий оказывается в том самом книжном магазине, где путешественник во времени покупает её и отдаёт Шекспиру, а тот снимает копию и так далее… Кого в таком случае нужно считать автором бессмертной трагедии?

3. Парадокс мальчика или девочки



В теории вероятностей этот парадокс также называют «Дети мистера Смита» или «Проблемы миссис Смит». Впервые он был сформулирован американским математиком Мартином Гарднером в одном из номеров журнала «Scientific American». Учёные спорят над парадоксом уже несколько десятилетий и существует несколько способов его разрешения.

Поразмыслив над проблемой, вы можете предложить и свой собственный вариант. В семье есть двое детей и точно известно, что один из них — мальчик. Какова вероятность того, что второй ребёнок тоже имеет мужской пол? На первый взгляд, ответ вполне очевиден — 50 на 50, либо он действительно мальчик, либо девочка, шансы должны быть равными.

Проблема в том, что для двухдетных семей существует четыре возможных комбинации полов детей — две девочки, два мальчика, старший мальчик и младшая девочка и наоборот — девочка старшего возраста и мальчик младшего. Первую можно исключить, так как один из детей совершенно точно мальчик, но в таком случае остаются три возможных варианта, а не два и вероятность того, что второе чадо тоже мальчик — один шанс из трёх.

4. Парадокс Журдена с карточкой



Проблему, предложенную британским логиком и математиком Филиппом Журденом в начале XX-го века, можно считать одной из разновидностей знаменитого парадокса лжеца.

Представьте себе — вы держите в руках открытку, на которой написано: «Утверждение на обратной стороне открытки истинно». Перевернув открытку, вы обнаруживаете фразу «Утверждение на другой стороне ложно». Как вы понимаете, противоречие налицо: если первое утверждение правдиво, то второе тоже соответствует действительности, но в таком случае первое должно оказаться ложным.

Если же первая сторона открытки лжива, то фразу на второй также нельзя считать истинной, а это значит, первое утверждение опять-таки становится правдой… Ещё более интересный вариант парадокса лжеца — в следующем пункте.

5. Софизм «Крокодил»



На берегу реки стоят мать с ребёнком, вдруг к ним подплывает крокодил и затаскивает ребёнка в воду. Безутешная мать просит вернуть её чадо, на что крокодил отвечает, что согласен отдать его целым и невредимым, если женщина правильно ответит на его вопрос: «Вернёт ли он её ребёнка?».

Понятно, что у женщины два варианта ответа — да или нет. Если она утверждает, что крокодил отдаст ей ребёнка, то всё зависит от животного — посчитав ответ правдой, похититель отпустит ребёнка, если же он скажет, что мать ошиблась, то ребёнка ей не видать, согласно всем правилам договора.

Отрицательный ответ женщины всё значительно усложняет — если он оказывается верным, похититель должен выполнить условия сделки и отпустить дитя, но таким образом ответ матери не будет соответствовать действительности. Чтобы обеспечить лживость такого ответа, крокодилу нужно вернуть ребёнка матери, но это противоречит договору, ведь её ошибка должна оставить чадо у крокодила.

Стоит отметить, что сделка, предложенная крокодилом, содержит логическое противоречие, поэтому его обещание невыполнимо. Автором этого классического софизма считается оратор, мыслитель и политический деятель Коракс Сиракузский, живший в V-м веке до нашей эры.

6. Апория «Дихотомия»



Ещё один парадокс от Зенона Элейского, демонстрирующий некорректность идеализированной математической модели движения.

Проблему можно поставить так — скажем, вы задались целью пройти какую-нибудь улицу вашего города от начала и до конца. Для этого вам необходимо преодолеть первую её половину, затем половину оставшейся половины, далее половину следующего отрезка и так далее.

Иначе говоря — вы проходите половину всего расстояния, затем четверть, одну восьмую, одну шестнадцатую — количество уменьшающихся отрезков пути стремится к бесконечности, так как любую оставшуюся часть можно разделить надвое, значит пройти весь путь целиком невозможно. Формулируя несколько надуманный на первый взгляд парадокс, Зенон хотел показать, что математические законы противоречат реальности, ведь на самом деле вы можете без труда пройти всё расстояние без остатка.

7. Апория «Летящая стрела»



Знаменитый парадокс Зенона Элейского затрагивает глубочайшие противоречия в представлениях учёных о природе движения и времени.

Апория сформулирована так: стрела, выпущенная из лука, остаётся неподвижной, так как в любой момент времени она покоится, не совершая перемещения. Если в каждый момент времени стрела покоится, значит она всегда находится в состоянии покоя и не движется вообще, так как нет момента времени, в который стрела перемещается в пространстве.

Выдающиеся умы человечества веками пытаются разрешить парадокс летящей стрелы, однако с логической точки зрения он составлен абсолютно верно. Для его опровержения требуется объяснить, каким образом конечный временной отрезок может состоять из бесконечного числа моментов времени — доказать это не удалось даже Аристотелю, убедительно критиковавшему апорию Зенона.

Аристотель справедливо указывал, что отрезок времени нельзя считать суммой неких неделимых изолированных моментов, однако многие учёные считают, что его подход не отличается глубиной и не опровергает наличие парадокса. Стоит отметить, что постановкой проблемы летящей стрелы Зенон стремился не опровергнуть возможность движения, как таковую, а выявить противоречия в идеалистических математических концепциях.

8. Парадокс Галилея



В своём труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки» Галилео Галилей предложил парадокс, демонстрирующий любопытные свойства бесконечных множеств.

Учёный сформулировал два противоречащих друг другу суждения.
Первое: есть числа, представляющие собой квадраты других целых чисел, например 1, 9, 16, 25, 36 и так далее. Существуют и другие числа, у которых нет этого свойства — 2, 3, 5, 6, 7, 8, 10 и тому подобные. Таким образом, общее количество точных квадратов и обычных чисел должно быть больше, чем количество только точных квадратов.

Второе суждение: для каждого натурального числа найдётся его точный квадрат, а для каждого квадрата существует целый квадратный корень, то есть, количество квадратов равно количеству натуральных чисел. На основании этого противоречия Галилей сделал вывод, что рассуждения о количестве элементов применены только к конечным множествам, хотя позже математики ввели понятие, мощности множества — с его помощью была доказана верность второго суждения Галилея и для бесконечных множеств.

9. Парадокс мешка картофеля



Допустим, у некоего фермера имеется мешок картофеля весом ровно 100 кг. Изучив его содержимое, фермер обнаруживает, что мешок хранился в сырости — 99% его массы составляет вода и 1% остальные вещества, содержащиеся в картофеле. Он решает немного высушить картофель, чтобы содержание воды в нём снизилось до 98% и переносит мешок в сухое место.

На следующий день оказывается, что, один литр (1 кг) воды действительно испарился, но вес мешка уменьшился со 100 до 50 кг, как такое может быть? Давайте посчитаем — 99% от 100 кг это 99 кг, значит соотношение массы сухого остатка и массы воды изначально было равно 1/99. После сушки вода насчитывает 98% от общей массы мешка, значит соотношение массы сухого остатка к массе воды теперь составляет 1/49. Так как масса остатка не изменилась, оставшаяся вода весит 49 кг.

Конечно, внимательный читатель сразу обнаружит грубейшую математическую ошибку в расчётах — мнимый шуточный «парадокс мешка картофеля» можно считать отличным примером того, как с помощью на первый взгляд «логичных» и «научно подкреплённых» рассуждений можно буквально на пустом месте выстроить теорию, противоречащую здравому смыслу.


Проблема также известна, как парадокс Гемпеля — второе название она получила в честь немецкого математика Карла Густава Гемпеля, автора её классического варианта.

Проблема формулируется довольно просто: каждый ворон имеет чёрный цвет. Из этого следует, что всё, что не чёрного цвета, не может быть вороном. Этот закон называется логическая контрапозиция, то есть если некая посылка «А» имеет следствие «Б», то отрицание «Б» равнозначно отрицанию «А».

Если человек видит чёрного ворона, это укрепляет его уверенность, что все вороны имеют чёрный окрас, что вполне логично, однако в соответствии с контрапозицией и принципом индукции, закономерно утверждать, что наблюдение предметов не чёрного цвета (скажем, красных яблок) также доказывает, что все вороны окрашены в чёрный цвет.

Иными словами — то, что человек живёт в Санкт-Петербурге доказывает, что он живёт не в Москве. С точки зрения логики парадокс выглядит безукоризненно, однако он противоречит реальной жизни — красные яблоки никоим образом не могут подтверждать тот факт, что все вороны чёрного цвета.
Источник: vseznaesh.ru
Поделись
с друзьями!
719
17
28
20 дней

Парадоксы биологии, которым до сих пор нет объяснения

Биосфера полна странных и удивительных явлений. Достаточно просто взглянуть на акул-домовых и утконосов. Биология может многое рассказать о том, почему в мире все так, как есть, но время от времени происходит нечто такое, что заставляет биологов лишь пожимать плечами.


1. Зевота


Есть три вещи, способные почти наверняка заставить любого из нас зевать: усталость, скука и зрелище зевающего человека. Первые две в какой-то степени связаны между собой, а третья – это та самая коварная и заразительная зевота, которая всех раздражает. Но независимо от того, что происходит вокруг, когда вы начинаете зевать, стоит отметить, что с биологической точки зрения это действие не имеет никакого смысла.


Однако этот феномен в равной степени распространен и у людей и у животных, и даже если зевота указывает на то, что вы устали, причина, по которой это происходит, остается загадкой. Какой толк широко раскрывать рот, если речь идет о физической усталости?

Исследования показали, что гормоны, выделяющиеся при зевании, вызывают очень кратковременное увеличение частоты сердечного ритма, которое может оказать легкий тонизирующий эффект, если вы устали, однако, гораздо чаще зевоту можно ошибочно принять за признак сонливости.

Тот факт, что большинство людей зевают, когда просыпаются, и то же самое делают перед тем, как уснуть, еще больше сбивает с толку. Таким образом, приходится констатировать, что истинная природа и функция зевоты до сих пор так и не установлена.

2. Почему мы плачем


В детстве мы плачем по самым разным причинам: из-за ободранного колена, потерянной игрушки и так далее. Почти все мы плачем над луком, но это исключительно из-за выделяемых им летучих химических веществ. Когда плачет младенец, для него это единственный способ привлечь внимание. Но почему нас заставляет плакать грустный фильм или красивая музыка?

Эмоциональные слезы с точки зрения биологии не имеют никакого смысла. Они ничего нам не дают. Вы можете возразить, что плач высвобождает химические вещества, которые позволяют нам чувствовать себя комфортно, безопасно и так далее. Но сами слезы для этого совершенно не нужны.

Мы можем плакать от ярости, страха или горечи. Но каковы бы ни были эмоции, вызвавшие слезы, у науки нет никакого объяснения, почему это вообще происходит. Физически, все, что делают слезы, это промывают и смазывают наши газа. Они удаляют загрязнения и поддерживают чистоту. А что еще они делают – этого никто до сих пор не знает.

3. Танцующий лес

Сосна – одно из самых распространенных деревьев на планете. Если вы находитесь в Северном полушарии, скорее всего, вас окружают эти красивые хвойные великаны. Они встречаются, в Соединенных Штатах, Канаде, России, Китае и почти везде на севере. В целом можно сказать, что они выглядят так же, как и большинство нормальных деревьев. За исключением одного места.


В России существует удивительное явление, которое называется «танцующим лесом». В Калининградской области есть место, где растет много сосен, но в отличие от других мест, здесь у них весьма причудливый вид. Они изгибаются, скручиваются и извиваются в спирали, как будто какой-то великан завязывал их в узлы.

Деревья, о которых идет речь, были посажены в шестидесятые годы прошлого столетия, и они не должны были быть столь необычными. Существуют теории, согласно которым дело в рыхлой песчаной почве или в гусеницах, которые повреждают их первые почки и делают хилыми и болезненными. Говорят также о ветре и даже о каком-то искусном лесоводе, который совершает различные манипуляции с деревьями по мере их роста. Однако, до сих биологам пор так и не удалось найти убедительное объяснение этому феномену.

4. Почему у нас есть отпечатки пальцев


Первое использование дактилоскопии для осуждения преступника относится к 1910 году. Таким образом, мы уже более ста лет понимаем уникальность отпечатков пальцев. Но, ведь совершенно очевидно, что они у нас имеются вовсе не для того, чтобы нас поймали за совершенное преступление. На самом деле, приходится признать, что никто не знает, зачем они нам нужны.


Если говорить о причудах биологии, трудно найти более необычную, чем эта. У каждого человека в мире есть свой уникальный папиллярный узор, но никто не может объяснить его природу и назначение. За исключением того, что, когда эта теория подвергается проверке, она ее не выдерживает.

Текстура подушечек пальцев на самом деле не увеличивает трение между пальцами и предметами, которые мы держим. Напротив, она уменьшает трение и затрудняет захват предметов, поскольку уменьшает площадь соприкосновения.

Другая теория об отпечатках пальцев заключается в том, что они помогают нам получать тактильные ощущения и собирать информацию. Но такова ли на самом деле их цель? «Может быть» – это лучший ответ, который есть на сегодняшний день у науки.
Источник: billionnews.ru
Поделись
с друзьями!
974
8
24
1 месяц

Интересные факты о времени

Время — это одно из самых загадочных явлений, с которым когда-либо сталкивалось человечество. Несмотря на то, что оно является атрибутом любого действия в нашей жизни, вопрос «как работает время» может поставить в тупик любого ученого, ведь мы еще не приблизились к разгадке всех его аспектов.

Почитайте о тех фактах или предположениях, которые не вызывают сомнений в мире науке или хотя бы являются общепринятыми концепциями.


Время — это иллюзия, созданная человеческим разумом


Мы воспринимаем время как минимум в трех видах: прошлое, настоящее и будущее. Именно поэтому появились концепции машины времени, которая способна отправить назад или вперед по временной шкале. Однако ученые поспорили бы с такой концепцией.

Дело в том, что они считают время не тем, чем оно является для людей, далеких от науки. По сути саму концепцию времени придумало человечество, чтобы упорядочить структуру мира.

С точки зрения Вселенной, времени не существует. Есть лишь движение вперед, расширение, и поэтому ситуация, когда можно «отмотать» время назад, нереальна хотя бы потому, что это противоречит законам физики.

Время является измерением


Мы воспринимаем время как отдельную от остальных величину, которая является чуть ли не основополагающей. Но опять же, с точки зрения науки, это не так. Ученые считают время таким же измерением, как длина, ширина и высота. Пространство необязательно будет существовать только при условии наличия четвертого измерения в виде времени, так как по крайней мере сейчас в науке не существует закона, запрещающего отделение этих величин. И все же, говоря о времени, подразумевают его неразрывную связь с физическими величинами.

Время относительно


Многие слышали о Теории относительности Эйнштейна, но не осиливают изучение даже основных понятий. Это нормально, ведь нужно неплохо знать физику, чтобы понимать труды знаменитого ученого. И все же есть теория, которая понятна большинству, — относительность времени.

Эйнштейн предложил идею, что время прямо зависит от скорости, и намного позже это предположение было доказано. Согласно теории ученого, время замедляется для вещей, находящихся в движении, относительно других объектов вне его движения.

Это значит, что если ты будешь лететь на космическом корабле, двигающемся на околосветовой скорости, тебе покажется, будто время на твоих часах практически остановилось, а для стороннего наблюдателя оно будет идти как обычно. В теории считается, что для объекта, двигающегося со световой скоростью, время и вовсе останавливается.

Времени могло не существовать до Большого взрыва


Теория Большого взрыва — это тот случай, когда в краткой интерпретации все выглядит логично, но стоит копнуть поглубже — и мозги кипят. Как тебе такая мысль, что все, что есть в бесконечной Вселенной, за мгновения вылетело из бесконечно маленькой точки, называемой сингулярностью?

Согласно этой же теории, Большой взрыв стал катализатором пространства-времени, породив все сущее, в том числе и время. Это означает, что до этого грандиозного события не было ни материи, ни времени, по крайней мере в том виде, в котором мы можем это осознать.

Время может существовать в более экзотическом виде


Мы живем по физическим законам нашей Вселенной и не можем их нарушить на текущем уровне развития технологий. Это, тем более, касается времени. Однако есть теория о мультивселенных, которая предполагает наличие от одной до бесконечного количества версий Вселенной, существующих параллельно нашему миру. В одних физические законы могут быть идентичны нашим, и отличия будут заключаться, к примеру, в чуть большем содержании кислорода в атмосфере Земли.

В других различия могут быть колоссальными, в том числе и в природе времени, где оно может быть более экзотическим, например, течь с несколько другой скоростью или периодически откатываться к определенной точке, подобно замкнутой петле.


Настоящего времени не существует


Выше мы упомянули, что с точки зрения человеческого разума существует прошлое, настоящее и будущее. Однако концепция настоящего в рамках времени — это фикция. Дело в том, что ничто не происходит в этом мире в настоящем времени, по крайней мере для нас. Так, например, увиденный тобой свет от лампочки был произведен в прошлом, и твой глаз зафиксировал его через доли секунды после возникновения.

Все, что мы видим, ощущаем и мыслим — это продукты прошлого. То же самое можно сказать и о будущем, ведь мысли о нем — лишь предположение разума и только.

Время может быть смоделировано


Существует гипотеза симуляции, которая предполагает, что весь наш мир — не более чем компьютерная модель, построенная более высокоразвитой цивилизацией. Причем эта концепция весьма популярна, некоторые ученые проверяют ее реальность и приходят ко мнению, что это вполне возможный сценарий.

Те существа, что создали эту компьютерную симуляцию, могли ввести в искусственный мир случайно или намеренно величину, которую мы называем временем. Если это действительно так, то, выйдя из симуляции, человек вряд ли смог бы приспособиться к новой реальности.

Время может быть цикличным


С точки зрения приверженцев Циклической модели, материя Вселенной многократно претерпевает последовательные циклы расширения и сужения. Сначала происходит Большой взрыв, затем Вселенная проходит все стадии эволюции, а после случается Большое сжатие. В финале Вселенная вновь сжимается в бесконечно малую сингулярность, а затем снова коллапсирует, и происходит Большой взрыв.

Вместе с этим, циклично и время, которое как бы завязано в узел. Оно то ускоряется в самом начале Большого взрыва, то замедляется к Большому сжатию.
Поделись
с друзьями!
4579
12
34
2 месяца

Они идут! 12 невероятных городских часов из разных уголков Земли

Трудно представить себе город без главных городских часов. В древности они являлись основой рабочей и социальной жизни, сегодня служат средством художественного самовыражения и туристическим аттракционом.


Часы Столетия


Тяньцзинь, Китай


Первый удар этих часов, установленных на вокзальной площади города Тяньцзинь китайской провинции Хэбэй, прозвучал в полночь 1 января 2000 года, знаменуя начало нового столетия. По замыслу создателей, Century Clock должны объединить восточный и западный мир. Например, римские цифры на циферблате сочетаются со знаками китайского календаря. Часы изготовлены из металла, их высота составляет 40 метров, а вес — более 170 тонн. Ночью скульптура подсвечивается.

Башня Ветров


Афины, Греция


Восьмиугольная башня Ветров на римской Агоре, недалеко от Акрополя, была построена еще в I веке до н. э. сирийским торговцем и астрономом Андроником из Кирры. Высота мраморного сооружения составляла 12,1 метра, диаметр — 8 метров. Каждая из восьми сторон была предназначена для регистрации преобладающего ветра, также снаружи башни располагались солнечные часы, а внутри — водяная клепсидра, питающаяся водами с Акрополя.

Цветочные часы


Женева, Швейцария


Эти цветочные часы были посажены в 1955 году в Английском саду Женевы, чтобы отметить столетие городского парка, а также чтобы почтить часовые традиции города. Пятиметровый циферблат долгое время считался самым большим в мире, но в 2005 году рекорд побили 15-метровые цветочные часы из Тегерана. Впрочем, 2,5-метровая секундная стрелка до сих пор считается самой длинной. Цветы регулярно меняют в зависимости от сезона.

Часы-пуля


Брно, Чехия


Загадочные черные часы, придуманные Петром Камеником и Олдричем Ружбром, появились в Брно на площади Свободы в 2010 году. Они сообщают время всего раз в сутки. Ровно в 11 часов специальный механизм выплевывает из «часов» стеклянную пулю. Это связано с красивой легендой о спасении города от врагов. Действо собирает толпы туристов, а счастливчик может унести пулю на память.

Самая высокая башня


Мекка, Саудовская Аравия


Королевская часовая башня Мекки высотой 601 метр входит в комплекс зданий Абрадж аль-Бейт (дословно «башни дома»), высочайшее сооружение в Саудовской Аравии. Ее строительство было завершено в 2012 году. Венчают 120-этажный небоскреб гигантские часы с четырьмя циферблатами, смотрящими в разные стороны света. Диаметр циферблата составляет 43 метра, длина часовой стрелки — 17 метров, а минутной — 22 метра. Они являются самыми большими башенными часами в мире и видны из любой точки города. В самом здании королевской часовой башни расположен одноименный отель.

Сверхточные часы


Вашингтон, США


В Военно-морской обсерватории США (US Naval Observatory или USNO) для нужд навигации разработаны часы USNO Master Clock, идущие с точностью до наносекунды. На самом деле это большой киберотдел, занимающийся обслуживанием целой системы атомных часов на основе цезия, рубидия и прочих элементов. Увидеть их работу, конечно, не получится, зато цифровой дисплей выставлен прямо у дороги.

Цифровой Метроном


Нью-Йорк, США


Цифровая инсталляция «Метроном» установлена в 1999 году на Юнион-сквер художниками Кристин Джонс и Эндрю Гинзелом. Барельеф с маятником был дополнен цифровыми часами «Пассаж», включавшими 15 знаков: 7 знаков справа показывали время в 24-часовом формате, 7 слева — оставшееся время суток, а центральный — сотые доли секунды. В 2020-м часы перенастроили: теперь они показывают обратный отсчет до экологической катастрофы.

Часы-флейта


Нонгкхай, Таиланд


Большие часы в форме бамбуковой флейты установлены в городском парке «Нонгтин» в городе Нонгкхай на северо-востоке Таиланда. Парк расположен на берегу реки Меконг, на другом берегу которой уже находится Лаос. Местные жители очень любят городской парк, считая его отличным местом для прогулок и медитаций, а также национальных праздников, например фестиваля воздушных шаров. К сожалению, часы только имитируют флейту, а не издают настоящие звуки.

Башня с ангелом


Тбилиси, Грузия


Многие туристы думают, что покосившаяся часовая башня, поросшая кустарником, — аутентичная развалюха Старого города в Тбилиси. На самом деле концептуальное здание было построено в 2010 году, чтобы отметить 30-летие Театра кукол Резо Габриадзе, рядом с которым оно и находится. Каждый час из расписных дверей появляется ангел и бьет молоточком в колокол, а дважды в день марионетки разыгрывают кукольный спектакль «Цикл жизни».

Солнечный круг


Джайпур, Индия


Джантар-Мантар в Джайпуре — это самая большая и лучше всех сохранившаяся из пяти обсерваторий, построенных махараджей Савай Джай Сингхом в 1727–1734 годах в Индии. Четыре другие располагались в Дели, Удджайне, Матхуре и Варанаси. Гномон Джантар-Мантара высотой 27 метров считается самыми большими солнечными часами в мире.

Старейший хронометр


Уэлс, Великобритания


Часы кафедрального собора Сент-Эндрю в графстве Сомерсетшир до недавнего времени считались самыми старыми из сохранившихся механических хронометров: их установка датировалась 1380 годом. Помимо часов и минут, механизм показывал фазы Луны, положение Солнца, а также двигал фигурки рыцарей-автоматонов. В 2010 году механический завод в часах был заменен электрическим.

Волхвы и Мавры


Венеция, Италия


Башня Святого Марка, или Торре-делл’Оролоджо, также известная как башня Мавров, — это, пожалуй, одни из самых известных в мире городских часов и одна из самых зрелищных достопримечательностей Венеции. Построенная в XV–XVI веках, башня прославилась своими часами с многочисленными астрономическими функциями, богатой архитектурой и разнообразными подвижными скульптурами, разыгрывающими целые спектакли.
Источник: vokrugsveta.ru
Поделись
с друзьями!
767
0
10
3 месяца

Ученые узнали, кому дети доверяют больше — людям или роботам

Исследователи из Сингапура провели эксперимент с группами детей разного возраста и выяснили, что доверие к машине или человеку зависит от того, сколько лет ребенку и насколько поступающая от обоих информация кажется ему достоверной.


Современные дети каждый день сталкиваются с цифровыми технологиями и искусственным интеллектом. Чтобы отвлечь даже годовалого ребенка в автомобиле, ему дают планшет с мультиками. Поэтому исследования о том, кому больше доверяют дети — машине или человеку, — с каждым годом становится все актуальнее.

Важно здесь и понимание того, насколько в будущем эти дети будут доверять фейковой информации, часть которой уже сегодня нередко генерируется ИИ. По мере взросления способность оценивать достоверность источника информации становится важным навыком для развития критического мышления.

Ученые из Сингапурского университета технологии и дизайна решили больше узнать о том, кому дети доверяют больше — людям или машинам, — и провели эксперимент. Его выводы представлены в журнале Child Development.

В исследовании приняли участие 120 детей из дошкольных учреждений Сингапура в возрасте от трех до пяти лет (57 из них были девочками, чаще всего азиатского происхождения). Их поделили на две группы: в первой (младшей) оказались малыши до 4,5 года, во второй — все остальные. Затем с каждым из детей общался информатор: либо робот-андроид от SoftBank Robotics NAO, обладающий человекоподобным, но роботизированным голосом, либо человек.

Чтобы условия эксперимента можно было сопоставить, люди, общавшиеся с детьми, согласовывали свои действия с действиями робота. Рядом с каждым из участников также сидел экспериментатор, задававший необходимые вопросы, чтобы ребенок не чувствовал давления и не соглашался с информатором, если он того не желает.

Ученые выяснили, что все дети готовы были доверять информации, поступившей как от роботов, так и от людей. Однако это происходило лишь в том случае, если и те, и другие до этого сообщали им точные данные о том или ином предмете (условно: называли мяч мячом, а не пирамидкой). Если же и те, и другие информаторы были ненадежными (ранее путались в своих данных), то дети из младшей группы, несмотря на ошибки обоих, больше доверяли человеку, а не роботу. Ребята постарше не верили обоим: вне зависимости от того, кто перед ними — машина или человек, — они смотрели не на этот критерий, а на то, насколько достоверна, по их мнению, информация, которую предоставляли собеседники.

«При создании роботов и других моделей на основе искусственного интеллекта для образовательных целей разработчики должны учитывать особенности восприятия маленьких детей. Понимание того, как меняется их доверие к людям и машинам по мере взросления, может способствовать созданию более эффективных условий обучения, гарантируя то, что применение технологий соответствует развивающимся когнитивным и социальным потребностям ребенка», — заявил соавтор исследования профессор Куин Йоу (W. Quin Yow).
Поделись
с друзьями!
313
1
1
4 месяца

Лучшие фотографии ноября и декабря 2023 по версии NASA

IC 443: Туманность Медуза

Гало в Баварии

Храм на фоне Луны и горы

NGC 1499: Туманность Калифорния

Остаток сверхновой Кассиопея А

Глубокое поле: туманность Сердце

Звезды и пыль в туманности Киля

Млечный путь

Спутник Юпитера Ганимед

LBN 86: Туманность Орлиный луч

Fleming's Triangular Wisp

Туманность Андромеды над Альпами

M1: Туманность Краба

Скопление галактик Форнакс

Как выглядит Солнце в минимуме и в максимуме своей активности
Поделись
с друзьями!
761
3
10
4 месяца
Уважаемый посетитель!

Показ рекламы - единственный способ получения дохода проектом EmoSurf.

Наш сайт не перегружен рекламными блоками (у нас их отрисовывается всего 2 в мобильной версии и 3 в настольной).

Мы очень Вас просим внести наш сайт в белый список вашего блокировщика рекламы, это позволит проекту существовать дальше и дарить вам интересный, познавательный и развлекательный контент!